当前位置:首页 > 技术分析 > 正文内容

直观易用的大模型开发框架LangChain,你会了没?

ruisui883个月前 (03-19)技术分析13

目前LangChain框架在集团大模型接入手册中的学习案例有限,为了让大家可以快速系统地了解LangChain大模型框架并开发,产出此文章。本文章包含了LangChain的简介、基本组件和可跑的代码案例(包含Embedding、Completion、Chat三种功能模型声明)。读完此文章,您可利用集团申请的api key+LangChain框架进行快速开发,体验大语言模型的魅力。

一、简介

LangChain 作为一个大语言模型(LLM)集成框架,旨在简化使用大语言模型的开发过程,包括如下组件:

LangChain框架优点:

1.多模型支持:LangChain 支持多种流行的预训练语言模型,如 OpenAI GPT-3、Hugging Face Transformers 等,为用户提供了广泛的选择。

2.易于集成:LangChain 提供了简单直观的API,可以轻松集成到现有的项目和工作流中,无需深入了解底层模型细节。

3.强大的工具和组件:LangChain 内置了多种工具和组件,如文档加载器、文本转换器、提示词模板等,帮助开发者处理复杂的语言任务。

4.可扩展性:LangChain 允许开发者通过自定义工具和组件来扩展框架的功能,以适应特定的应用需求。

5.性能优化:LangChain 考虑了性能优化,支持高效地处理大量数据和请求,适合构建高性能的语言处理应用。

6.Python 和 Node.js 支持:开发者可以使用这两种流行的编程语言来构建和部署LangChain应用程序。

由于支持 Node.js ,前端大佬们可使用Javascript语言编程从而快速利用大模型能力,无需了解底层大模型细节。同时也支持JAVA开发,后端大佬同样适用。

本篇文章案例聚焦Python语言开发。


二、基本组件

oPrompt【可选】

o告知LLM内system服从什么角色

o占位符:设置{input}以便动态填补后续用户输入

oRetriever【可选】

oLangChain一大常见应用场景就是RAG(Retrieval-Augmented Generation),RAG 为了解决LLM中语料的通用和时间问题,通过增加最新的或者垂类场景下的外部语料,Embedding化后存入向量数据库,然后模型从外部语料中寻找相似语料辅助回复

oModels

o可做 Embedding化,语句补全,对话等

支持的模型选择,OpenAI为例

oParser【可选】

oStringParser,JsonParser 等

o将模型输出的AIMessage转化为string, json等易读格式

上述介绍了Langchain开发中常见的components,接下来将通过一简单案例将上述组件串起来,让大家更熟悉Langchain中的组件及接口调用。


三、小试牛刀

import os
# gpt 网关调用
os.environ["OPENAI_API_KEY"] = "{申请的集团api key}"
os.environ["OPENAI_API_BASE"] = "{您的url}"

import openai

from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())

openai.api_key = os.environ['OPENAI_API_KEY']

from langchain.prompts import ChatPromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.schema.output_parser import StrOutputParser

prompt = ChatPromptTemplate.from_template(
    "tell me a short joke about {topic}"
)
model = ChatOpenAI()
output_parser = StrOutputParser()

chain = prompt | model | output_parser

chain.invoke({"topic": "bears"})

输出:

"Why don't bears wear shoes?\nBecause they have bear feet!"

其中 chain = prompt | model | output_parser 按照数据传输顺序将上述声明的 prompt template、大语言模型、输出格式串联起来(Chain),逻辑清晰直接。

代码案例:调用Embedding、Completion、Chat Model

o将文本转化为Embedding :
langchain_community.embeddings <-> OpenAIEmbeddings

from langchain_community.embeddings import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(
    model="text-embedding-ada-002",
    openai_api_key=os.environ["OPENAI_API_KEY"],
    openai_api_base=os.environ["OPENAI_API_BASE"]
)

text = "text"
query_result = embeddings.embed_query(text)

o文本补全:langchain_community.llms <-> OpenAI completion

from langchain_community.llms import OpenAI

llm = OpenAI(
    model_name='gpt-35-turbo-instruct-0914',
    openai_api_key=os.environ["OPENAI_API_KEY"],
    base_url=base_url,
    temperature=0
)

llm.invoke("I have an order with order number 2022ABCDE, but I haven't received it yet. Could you please help me check it?")

o对话模型:langchain_openai <-> ChatOpenAI

from langchain_openai import ChatOpenAI

model = ChatOpenAI(model_name="gpt-35-turbo-1106") # "glm-4"
model.invoke("你好,你是智谱吗?")

四、总结

LangChain作为一个使用流程直观的大模型开发框架,掌握它优势多多。希望您可以通过上述内容入门并熟悉LangChain框架,欢迎多多交流!

扫描二维码推送至手机访问。

版权声明:本文由ruisui88发布,如需转载请注明出处。

本文链接:http://www.ruisui88.com/post/2887.html

分享给朋友:

“直观易用的大模型开发框架LangChain,你会了没?” 的相关文章

「2022」打算跳槽涨薪,必问面试题及答案——VUE篇

1、为什么选择VUE,解决了什么问题?vue.js 正如官网所说的,是一套构建用户界面的渐进式框架。与其它重量级框架不同的是,vue 被设计为可以自底向上逐层应用。vue 的核心库只关注视图层,不仅易于上手,还便于与第三方库或既有项目整合。另外一方面,当与现代化工具链以及各种支持类库结合使用时,vu...

用IDEA开发如何用Git快速拉取指定分支代码?

1,准备空的文件夹,git init2,关联远程仓库,git remote add origin gitlab地址3,拉取远程分支代码,git pull origin 远程分支名再用IDEA打开项目即可...

摄影后期必看 | PS插件camera raw 16.4教程 | 范围蒙版

范围蒙版Camera Raw 【蒙版】模块中提供了三个范围蒙版工具,可以通过特定的范围来创建蒙版。此次新增的【范围蒙版】大大加强了acr插件对局部调整的能力。点击下拉小箭头可以看到【颜色范围】,可用于快速选择想要编辑的颜色。快捷键:Shift + C【明亮度范围】,可用于快速选择想要调整的明亮度。快...

Acustica Audio 发布模拟Roland Jupiter 双声道合成器插件 TH2

福利: Acustica Audio 发布模拟Roland Jupiter 风格的双声道合成器插件 TH2 免费下载 意大利 Acustica Audio 公司发布布模拟Roland Jupiter 风格的双声道合成器插件 TH2 ,灵感来源于Acustica Audio的THING-8系列,它是...

深度解析!AI智能体在To B领域应用,汽车售后服务落地全攻略

在汽车售后服务领域,AI智能体的应用正带来一场效率和专业度的革命。本文深度解析了一个AI智能体在To B领域的实际应用案例,介绍了AI智能体如何通过提升服务顾问和维修技师的专业度及维修效率,优化汽车售后服务流程。上周我分享了AI智能体+AI小程序To C的AI应用场景《1000%增长!我仅用一个小时...

Gemini应用在Android上广泛推出2.0闪电模式切换器

#头条精品计划# 快速导读谷歌(搜索)应用的测试频道在安卓设备的双子应用中推出了2.0闪电实验功能,现已向稳定用户开放。双子应用通过谷歌应用运行,目前推出的15.50版本中,用户可通过模型选择器体验不同选项,包括1.5专业版、1.5闪电版和2.0闪电实验版。2.0闪电实验模型提供了更快的响应速度和优...