当前位置:首页 > 技术分析 > 正文内容

Spring AI与DeepSeek实战一:快速打造智能对话应用

ruisui882个月前 (03-06)技术分析8

一、概述

在 AI 技术蓬勃发展的今天,国产大模型 DeepSeek 凭借其 低成本高性能 的特点,成为企业智能化转型的热门选择。而 Spring AI 作为 Java 生态的 AI 集成框架,通过统一API、简化配置等特性,让开发者无需深入底层即可快速调用各类 AI 服务。本文将手把手教你通过 spring-ai 集成 DeepSeek 接口实现普通对话与流式对话功能,助力你的 Java 应用轻松接入 AI 能力!


二、申请DeepSeek的API-KEY

相较于直接调用 DeepSeek 官方的 API,阿里云百炼基于阿里云强大的云计算基础设施,提供了高可用性和稳定性的服务,并且支持程序运行时动态切换 模型广场 中的任意大模型。

登录阿里云,进入 阿里云百炼 的页面:

https://bailian.console.aliyun.com/?apiKey=1#/api-key

创建自己的 API-KEY


三、项目搭建

3.1. 开发环境要求

  • JDK 17+
  • Spring Boot 3.2.x及以上

3.2. maven配置

Spring Boot 项目的 pom.xml 中添加 spring-ai 依赖


    com.alibaba.cloud.ai
    spring-ai-alibaba-starter

增加仓库的配置


    
        alimaven
        https://maven.aliyun.com/repository/public
    
    
        spring-milestones
        https://repo.spring.io/milestone
        
            false
        
    
    
        spring-snapshots
        https://repo.spring.io/snapshot
        
            false
        
    

3.3. 配置 API-KEY

application.yml 中添加以下配置:

spring:
  ai:
    dashscope:
      api-key: sk-xxxxxx
  • api-key 配置在阿里云百炼里申请的api-key

3.4. 创建ChatClient对象

private final ChatClient chatClient;

public ChatController(ChatClient.Builder builder) {
    String sysPrompt = """
        你是一个博学的智能聊天助手,请根据用户提问回答。
        请讲中文。
        今天的日期是 {current_date}。
        """;
    this.chatClient = builder
            .defaultSystem(sysPrompt)
            .defaultOptions(
                    DashScopeChatOptions.builder()
                            /**
                             * 值范围:[0, 2),系统默认值0.85。不建议取值为0,无意义
                             */
                            .withTemperature(1.3)
                            .withModel("deepseek-v3")
                            .build()
            )
            .build();
}

defaultSystem 指定系统 prompt 来约束大模型的行为或者提供一些上下文信息,如这里告诉大模型今天的日期是多少,支持占位符;

defaultOptions 配置模型的参数

withTemperature 用于控制随机性和多样性的程度,值越高大模型回复的内容越丰富越天马行空

withModel 配置模型广场中的模型名称,这里填写 deepseek-v3

模型广场的模型名称清单:https://help.aliyun.com/zh/model-studio/getting-started/models

3.5. 创建对话接口

@GetMapping(value = "/chat")
public String chat(@RequestParam String input, HttpServletResponse response) {
    // 设置字符编码,避免乱码
    response.setCharacterEncoding("UTF-8");

    return chatClient.prompt().user(input)
            .system(s -> s.param("current_date", LocalDate.now().toString()))
            .call()
            .content();
}

每次调用接口时,通过 system 来给 current_date 占位符动态赋值。

调用示例

  • 问身份


  • 问日期


3.6. 切换模型

@GetMapping(value = "/chat")
public String chat(@RequestParam String input, @RequestParam(required = false) String model, HttpServletResponse response) {
    response.setCharacterEncoding("UTF-8");

    if (StrUtil.isEmpty(model)) {
        model = "deepseek-v3";
    }

    return chatClient.prompt().user(input)
            .system(s -> s.param("current_date", LocalDate.now().toString()))
            .options(DashScopeChatOptions.builder().withModel(model).build())
            .call()
            .content();
}

使用 withModel 来配置模型名称

调用示例

  • 切换deepseek-r1模型

  • 切换通义千问模型

3.7. 使用prompt模板

通过 PromptTemplate 可以编辑复杂的提示词,并且也支持占位符

@GetMapping(value = "/chatTemp")
public String chatTemp(@RequestParam String input, HttpServletResponse response) {
    response.setCharacterEncoding("UTF-8");

    // 使用PromptTemplate定义提示词模板
    PromptTemplate promptTemplate = new PromptTemplate("请逐步解释你的思考过程: {input}");
    Prompt prompt = promptTemplate.create(Map.of("input", input));

    return chatClient.prompt(prompt)
            .system(s -> s.param("current_date", LocalDate.now().toString()))
            .call()
            .content();
}

这里提出让 deepseek-v3 进行逐步拆分思考,并把思考过程返回。

调用示例

可以看到大模型会拆分多步来进行推论结果。

3.8. 使用流式对话

当前接口需等待大模型完全生成回复内容才能返回,这用户体验并不好。为实现类似 ChatGPT 的逐句实时输出效果,可采用流式传输技术(Streaming Response)。

@GetMapping(value = "/streamChat", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
public Flux streamChat(@RequestParam String input, HttpServletResponse response) {
    response.setCharacterEncoding("UTF-8");

    // 使用PromptTemplate定义提示词模板
    PromptTemplate promptTemplate = new PromptTemplate("请逐步解释你的思考过程: {input}");
    Prompt prompt = promptTemplate.create(Map.of("input", input));

    return chatClient.prompt(prompt)
            .system(s -> s.param("current_date", LocalDate.now().toString()))
            .stream()
            .content()
            .concatWith(Flux.just("[DONE]"))
            .onErrorResume(e -> Flux.just("ERROR: " + e.getMessage(), "[DONE]"));
}

调用时把 call() 改成 stream()

并且遵循SSE协议最后发送[DONE]终止标识

调用示例

data: xxx 这种是 Server-Sent Events 的格式要求;

需要前端搭配 EventSource 或 WebSocket 等方式来接收流式数据,并结合 marked.js 来正确显示 markdown 语法。


四、总结

虽然通过 Spring AI 能够快速完成 DeepSeek 大模型与 Spring Boot 项目的对接,实现基础的对话接口开发,但这仅是智能化转型的初级阶段。要将大模型能力真正落地为生产级应用,还是需实现以下技术:

  1. 能力扩展层:通过 智能体 实现意图理解与任务调度,结合 FunctionCall 实现结构化数据交互,实现AI与业务系统的无缝对接;
  2. 知识增强层:应用 RAG(检索增强生成)技术构建领域知识库,解决大模型幻觉问题,支撑专业场景的精准问答;
  3. 流程编排层:设计 Agent 工作流实现复杂业务逻辑拆解,支持多步骤推理与自动化决策;
  4. 模型优化层:基于业务数据实施模型微调 Fine-tuning 提升垂直场景的响应质量和可控性。


五、完整代码

  • Gitee地址:

https://gitee.com/zlt2000/zlt-spring-ai-app

  • Github地址:

https://github.com/zlt2000/zlt-spring-ai-app

扫描二维码推送至手机访问。

版权声明:本文由ruisui88发布,如需转载请注明出处。

本文链接:http://www.ruisui88.com/post/2531.html

标签: mvn help:system
分享给朋友:

“Spring AI与DeepSeek实战一:快速打造智能对话应用” 的相关文章

红帽最新的企业 Linux 发行版具有解决混合云复杂性的新功能

据zdnet网5月1日报道,红帽这家 Linux 和超云领导者今天发布了其最新的旗舰 Linux 发行版 Red Hat Enterprise Linux (RHEL) 9.4,此前上周宣布对已有十年历史的流行 RHEL 7.9 再支持四年。这个领先的企业 Linux 发行版的最新版本引入了许多新功...

带你五步学会Vue SSR

作者:liuxuan 前端名狮转发链接:https://mp.weixin.qq.com/s/6K6GUHcLwLG4mzfaYtVMBQ前言SSR大家肯定都不陌生,通过服务端渲染,可以优化SEO抓取,提升首页加载速度等,我在学习SSR的时候,看过很多文章,有些对我有很大的启发作用,有些就只是照搬官...

Gitlab概览

Gitlab是开源的基于Git的仓库管理系统,也可以管理软件开发的整个生命周期,是项目管理和代码托管平台,支撑着整个DevOps的生命周期。Gitlab很容易选为GitHub,作为公司私有库管理的工具。我们可以用Gitlab Workflow来协同整个团队的软件开发管理过程。软件开发阶段Gitlab...

学无止境:Git 如何优雅地回退代码

来源:https://zhenbianshu.github.io前言从接触编程就开始使用 Git 进行代码管理,先是自己玩 Github,又在工作中使用 Gitlab,虽然使用时间挺长,可是也只进行一些常用操作,如推拉代码、提交、合并等,更复杂的操作没有使用过,看过的教程也逐渐淡忘了,有些对不起 L...

前后端分离自动化运维平台开发

运维平台采用前后端分离:前端vue,框架vue-element-admin;后端python,框架django-rest-framework.目前运维平台模块如下:1、 CMDB管理应用管理、环境管理、开发语言管理、产品项目管理、资产管理2、 构建发布持续构建、持续部署、Jar工程依赖构建3、 容器...

内存问题探微

这篇文章是我在公司 TechDay 上分享的内容的文字实录版,本来不想写这么一篇冗长的文章,因为有不少的同学问是否能写一篇相关的文字版,本来没有的也就有了。说起来这是我第二次在 TechDay 上做的分享,四年前第一届 TechDay 不知天高地厚,上去讲了一个《MySQL 最佳实践》,现在想起来那...